China Professional Small Trailer Axle Tandem Axle Trailer Air Suspension with Hot selling

Product Description

  1. Special heat-treat alloy steel axle beam, it has the virtues of good synthetic performance, strong load ability and lower self weight.
  2. Wholly heat treatment for high quality alloy forged solid spindle, providing superior fatigue capability.
  3. High performance asbestos free brake linings extend service life.
  4. Camshaft matching with special seals, can ensure no entry of the grease into the brake drum thus axle will be more safety.
  5. Mobil grease lengthens maintenance-free time.
  6. Bearing is the domestic top brand, with the advantages of over loading capability, high rotating speed,good intensity, abrade resistant and heat resistant.
  7. Wheel nut is made of alloy steel with high strength, good tensile and bending resistance,not easy to break.
  8. Key components of axle are processed by digital equipment, complied with the international standard. Special requirements can also be meet as per client’s request

Axle – American Type Inboard Series

Model

Capacity Brake Track Distance of Spring Distance of Brake Chamber Axle tube Wheel Fixing Bearing Total Length Weight Recommend wheel
T mm mm mm mm mm Stud P.C.D. C.B.D.   mm kg  
UTA13RA03B2 13 420×180 1840 ≥930 390 127
x19
10-M22x1.5
ISO
335 281 518445/10 2185 372 7.5-20
UTA13RA03B3 13 420×200 1840 ≥930 370 127
x19
10-M22x1.5
ISO
335 281 518445/10 2185 385 7.5-20
UTA13RA02B2 13 420×180 1840 ≥930 390 127
x19
10-M22x1.5
ISO
285.75 221 518445/10 2185 372 7.5-20
UTA13RA07B2 13 420×180 1840 ≥930 390 127
x19
8-M20x1.5
JAP
285 221 518445/10 2185 372 7.5-20
UTA13SB03B2 13 420×180 1840 ≥930 390 150 10-M22x1.5
ISO
335 281 518445/10 2185 372 7.5-20
UTA13SB03B3 13 420×200 1840 ≥930 370 150 10-M22x1.5
ISO
335 281 518445/10 2185 385 7.5-20
UTA13SB02B2 13 420×180 1840 ≥930 390 150 10-M22x1.5
ISO
285.75 221 518445/10 2185 372 7.5-20
UTA13SB07B2 13 420×180 1840 ≥930 390 150 8-M20x1.5
JAP
285 221 518445/10 2185 372 7.5-20
UTA16RA03B4 16 420×220 1850 ≥940 360 127
x25
10-M22x1.5
ISO
335 281 518445/220149 2205 430 20″
UTA16SB03B4 16 420×220 1850 ≥940 360 150 10-M22x1.5
ISO
335 281 518445/220149 2205 430 20″

Axle – American Type Outboard Series

Model

Capacity Brake Track Distance of Spring Distance of Brake Chamber Axle tube Wheel Fixing Bearing Total Length Weight Recommend wheel
T mm mm mm mm mm Stud P.C.D. C.B.D.   mm kg  
UTA13RA12B2 13 420×180 1840 ≥930 390 127
x19
10-M22x1.5
ISO
335 281 518445/518445 2185 378 7.5-20
UTA13RA12B3 13 420×200 1840 ≥930 370 127
x19
10-M22x1.5
ISO
335 281 518445/518445 2185 390 7.5-20
UTA13RA11B2 13 420×180 1840 ≥930 390 127
x19
10-M22x1.5
ISO
285.75 221 518445/518445 2185 378 7.5-20
UTA13RA11B3 13 420×200 1840 ≥930 370 127
x19
10-M22x1.5
ISO
285.75 221 518445/518445 2185 390 7.5-20
UTA13SB12B2 13 420×180 1840 ≥930 390 150 10-M22x1.5
ISO
335 281 518445/518445 2185 378 7.5-20
UTA13SB12B3 13 420×200 1840 ≥930 370 150 10-M22x1.5
ISO
335 281 518445/518445 2185 390 7.5-20
UTA13SB11B2 13 420×180 1840 ≥930 390 150 10-M22x1.5
ISO
285.75 221 518445/518445 2185 378 7.5-20
UTA13SB11B3 13 420×220 1840 ≥930 350 150 10-M22x1.5
ISO
285.75 221 518445/518445 2185 378 7.5-20
UTA13SB14B2 13 420×180 1840 ≥930 390 150 8-M20x1.5
JAP
285 221 518445/518445 2185 378 7.5-20
UTA16SB12B4 16 420×220 1850 ≥940 360   150 10-M22x1.5
ISO
335 281 518445/220149 2205 440 8.00-20

Axle – American Type 127 Square and 146 Round Series

Model

Capacity Brake Track Distance of Spring Distance of Brake Chamber Axle tube Wheel Fixing Bearing Total Length Weight Recommend wheel
T mm mm mm mm mm Stud P.C.D. C.B.D.   mm kg  
UTA13SA12B3 13 420×200 1816 ≥916 356  127 10-M22x1.5
ISO
335 281 518445/518445 2176 360 7.5-20
UTA13SA11B3 13 420×200 1816 ≥916 356  127 10-M22x1.5
ISO
285.75  221 518445/518445 2176 360 7.5-20
UTA13SA14B3 13 420×200 1816 ≥916 356  127 8-M20x1.5
JAP
285 221 518445/518445 2176 360 7.5-20
UTA13SA17B3 13 420×200 1816 ≥916 356  127 10×7/8″-11
BSF
335 281 518445/518445 2176 360 7.5-20
UTA16SA12B4 16 420×220 1850 ≥940 350  127 10-M22x1.5
ISO
335 281 518445/220149 2200 400 8.0-20
UTA13RB11B2 13 420×180 2121 680  146x
19
10-M22x1.5
ISO
285.75 221 518445/220149 2461 380 7.5-20

Axle – Germany Series
 

Model

Capacity Brake Track Distance of Spring Distance of Brake Chamber Axle tube Wheel Fixing Bearing Total Length Weight Recommend wheel
T mm mm mm mm mm Stud P.C.D. C.B.D.   mm kg  
UTG12SB03B2 12 420×180 1840 ≥940 440 150 10-M22x1.5
ISO
335 281 33213/
33118
2172 370 8.00-20
UTG12SB03B3 12 420×200 1840 ≥940 375 150 10-M22x1.5
ISO
335 281 33213/
33118
2172 397 8.00-20
UTG12SB19B2 12 420×180 1870 ≥980 395 150 6-M20x1.5 33213/
33118
2155 430 8.0-20
UTG12SB19B3 12 420×200 1870 ≥980 395 150 6-M20x1.5 33213/
33118
2155 450 8.5-20
UTG14SB03B2 14 420×180 1840 ≥950 380 150 10-M22x1.5
ISO
335 281 33215/
32219
2222 400 8.00-20
UTG14SB03B3 14 420×200 1840 ≥950 360 150 10-M22x1.5
ISO
335 281 33215/
32219
2222 417 8.00-20
UTG14SB19B3 14 420×200 1870 ≥900 250 150 6-M20x1.5 33215/
32219
2192 462 8.5-20
UTG16SB03B2 16 420×180 1850 ≥950 390 150 10-M22x1.5
ISO
335 281 32314/
32222
2293 450 8.5-20
UTG16SB03B3 16 420×200 1850 ≥950 390 150 10-M22x1.5
ISO
335 281 32314/
32222
2293 459 8.5-20
UTG16SB03B4 16 420×220 1850 ≥950 390 150 10-M22x1.5
ISO
335 281 32314/
32222
2293 465 8.5-20
UTG16SB19B3 16 420×200 1870 ≥900 253 150 6-M20x1.5 32314/
32222
2260 566 8.5-24

Model

Capacity Brake Track Distance of Spring Distance of Brake Chamber Axle tube Wheel Fixing Bearing Total Length Weight Recommend wheel
T mm mm mm mm mm Stud P.C.D. C.B.D.   mm kg  
UTL11RA01B1 11 311×190 1820 ≥920 270 127
x16
10-M22x1.5 ISO 225 176 518445/518445 2166 275 6.5-15
17.5×6.75

Axle – Farm Axle Brake Series

Model Capacity Brake Track Axle tube Wheel Fixing Bearing DIM D
T mm mm mm Stud P.C.D. C.B.D.   mm
UTF6S60B 6 300×100 1800 Solid 60×60 6-M20x1.5 275 220 32211/ 33571 587.5
UTF8S80B 8 300×100 1800 Solid 80×80 8-M20x1.5 275 220 32212/32215 587.5
UTF9S90B 9 300×100 1800 Solid 90×90 8-M20x1.5 275 220 32211/33014 587.5

Axle – Farm Axle Unbrake Series
 

Model Capacity Track Axle tube Wheel Fixing Bearing Total Length
T mm mm Stud P.C.D. C.B.D.   mm
UTS60UB 6 1840 60 6-M18x1.5 205 160 35711/35718 2571
UTF7S70UB 7 1840 70 6-M18x1.5 205 160 35713/32210 2078
UTF8S80UB 8 1840 80 8-M18x1.5 275 220 32212/32215 2092
UTF9S90UB 9 1840 90 10-M18x1.5 335 281 32213/32216 2104
UTF10S100UB 10 1840 100 10-M18x1.5 335 281 32214/32217 2104
UTF12R127UB 12 1840 127 10-M18x1.5 335 281 33118/33213 2156

Guide to Drive Shafts and U-Joints

If you’re concerned about the performance of your car’s driveshaft, you’re not alone. Many car owners are unaware of the warning signs of a failed driveshaft, but knowing what to look for can help you avoid costly repairs. Here is a brief guide on drive shafts, U-joints and maintenance intervals. Listed below are key points to consider before replacing a vehicle driveshaft.
air-compressor

Symptoms of Driveshaft Failure

Identifying a faulty driveshaft is easy if you’ve ever heard a strange noise from under your car. These sounds are caused by worn U-joints and bearings supporting the drive shaft. When they fail, the drive shafts stop rotating properly, creating a clanking or squeaking sound. When this happens, you may hear noise from the side of the steering wheel or floor.
In addition to noise, a faulty driveshaft can cause your car to swerve in tight corners. It can also lead to suspended bindings that limit overall control. Therefore, you should have these symptoms checked by a mechanic as soon as you notice them. If you notice any of the symptoms above, your next step should be to tow your vehicle to a mechanic. To avoid extra trouble, make sure you’ve taken precautions by checking your car’s oil level.
In addition to these symptoms, you should also look for any noise from the drive shaft. The first thing to look for is the squeak. This was caused by severe damage to the U-joint attached to the drive shaft. In addition to noise, you should also look for rust on the bearing cap seals. In extreme cases, your car can even shudder when accelerating.
Vibration while driving can be an early warning sign of a driveshaft failure. Vibration can be due to worn bushings, stuck sliding yokes, or even springs or bent yokes. Excessive torque can be caused by a worn center bearing or a damaged U-joint. The vehicle may make unusual noises in the chassis system.
If you notice these signs, it’s time to take your car to a mechanic. You should check regularly, especially heavy vehicles. If you’re not sure what’s causing the noise, check your car’s transmission, engine, and rear differential. If you suspect that a driveshaft needs to be replaced, a certified mechanic can replace the driveshaft in your car.
air-compressor

Drive shaft type

Driveshafts are used in many different types of vehicles. These include four-wheel drive, front-engine rear-wheel drive, motorcycles and boats. Each type of drive shaft has its own purpose. Below is an overview of the 3 most common types of drive shafts:
The driveshaft is a circular, elongated shaft that transmits torque from the engine to the wheels. Drive shafts often contain many joints to compensate for changes in length or angle. Some drive shafts also include connecting shafts and internal constant velocity joints. Some also include torsional dampers, spline joints, and even prismatic joints. The most important thing about the driveshaft is that it plays a vital role in transmitting torque from the engine to the wheels.
The drive shaft needs to be both light and strong to move torque. While steel is the most commonly used material for automotive driveshafts, other materials such as aluminum, composites, and carbon fiber are also commonly used. It all depends on the purpose and size of the vehicle. Precision Manufacturing is a good source for OEM products and OEM driveshafts. So when you’re looking for a new driveshaft, keep these factors in mind when buying.
Cardan joints are another common drive shaft. A universal joint, also known as a U-joint, is a flexible coupling that allows 1 shaft to drive the other at an angle. This type of drive shaft allows power to be transmitted while the angle of the other shaft is constantly changing. While a gimbal is a good option, it’s not a perfect solution for all applications.
CZPT, Inc. has state-of-the-art machinery to service all types of drive shafts, from small cars to race cars. They serve a variety of needs, including racing, industry and agriculture. Whether you need a new drive shaft or a simple adjustment, the staff at CZPT can meet all your needs. You’ll be back on the road soon!

U-joint

If your car yoke or u-joint shows signs of wear, it’s time to replace them. The easiest way to replace them is to follow the steps below. Use a large flathead screwdriver to test. If you feel any movement, the U-joint is faulty. Also, inspect the bearing caps for damage or rust. If you can’t find the u-joint wrench, try checking with a flashlight.
When inspecting U-joints, make sure they are properly lubricated and lubricated. If the joint is dry or poorly lubricated, it can quickly fail and cause your car to squeak while driving. Another sign that a joint is about to fail is a sudden, excessive whine. Check your u-joints every year or so to make sure they are in proper working order.
Whether your u-joint is sealed or lubricated will depend on the make and model of your vehicle. When your vehicle is off-road, you need to install lubricable U-joints for durability and longevity. A new driveshaft or derailleur will cost more than a U-joint. Also, if you don’t have a good understanding of how to replace them, you may need to do some transmission work on your vehicle.
When replacing the U-joint on the drive shaft, be sure to choose an OEM replacement whenever possible. While you can easily repair or replace the original head, if the u-joint is not lubricated, you may need to replace it. A damaged gimbal joint can cause problems with your car’s transmission or other critical components. Replacing your car’s U-joint early can ensure its long-term performance.
Another option is to use 2 CV joints on the drive shaft. Using multiple CV joints on the drive shaft helps you in situations where alignment is difficult or operating angles do not match. This type of driveshaft joint is more expensive and complex than a U-joint. The disadvantages of using multiple CV joints are additional length, weight, and reduced operating angle. There are many reasons to use a U-joint on a drive shaft.
air-compressor

maintenance interval

Checking U-joints and slip joints is a critical part of routine maintenance. Most vehicles are equipped with lube fittings on the driveshaft slip joint, which should be checked and lubricated at every oil change. CZPT technicians are well-versed in axles and can easily identify a bad U-joint based on the sound of acceleration or shifting. If not repaired properly, the drive shaft can fall off, requiring expensive repairs.
Oil filters and oil changes are other parts of a vehicle’s mechanical system. To prevent rust, the oil in these parts must be replaced. The same goes for transmission. Your vehicle’s driveshaft should be inspected at least every 60,000 miles. The vehicle’s transmission and clutch should also be checked for wear. Other components that should be checked include PCV valves, oil lines and connections, spark plugs, tire bearings, steering gearboxes and brakes.
If your vehicle has a manual transmission, it is best to have it serviced by CZPT’s East Lexington experts. These services should be performed every 2 to 4 years or every 24,000 miles. For best results, refer to the owner’s manual for recommended maintenance intervals. CZPT technicians are experienced in axles and differentials. Regular maintenance of your drivetrain will keep it in good working order.

China Professional Small Trailer Axle Tandem Axle Trailer Air Suspension   with Hot sellingChina Professional Small Trailer Axle Tandem Axle Trailer Air Suspension   with Hot selling